
Unlock new heights in material research
2025-03-12 09:19The high temperature accessory in a diffractometer is an additional device that can perform X-ray diffraction analysis on samples under high temperature conditions. To understand the changes in crystal structure of samples during high-temperature heating and the changes in mutual dissolution of various substances during high-temperature heating.
Working principle of high temperature accessory:
By using methods such as resistance heating, induction heating, or radiation heating, the sample is heated within a set temperature range. At the same time, it is equipped with high-precision temperature sensors and control systems to monitor and adjust the temperature of the sample in real time, ensuring the stability and accuracy of the temperature. The temperature control accuracy can reach ±0.5℃ or even higher. In order to maintain the stability of the sample at high temperatures and prevent it from reacting with oxygen in the air, high temperature accessory usually require an atmosphere protection system. Common atmospheres include inert gases such as argon, nitrogen, etc. The atmosphere control system can accurately control the flow rate and pressure of the atmosphere, providing a stable experimental environment for the sample.
The main functions of high temperature accessory is:
Real time monitoring of sample phase transition, chemical reactions, crystal structure changes, and other processes can be carried out in high-temperature environments to obtain information on the structure and properties of substances at different temperatures. By analyzing the position, intensity, and shape of diffraction peaks, the crystal cell parameters, crystal structure, phase composition, and other information of the sample can be obtained, and the content of each component can be accurately measured. Study the rate, mechanism, and diffusion behavior of chemical reactions. For example, observing the structural changes of catalysts during high-temperature reactions, understanding the formation and disappearance of their active centers, and optimizing the performance of catalysts.
Application area of high temperature accessory:
Used to study the phase transition, crystal structure evolution, and performance changes of high-temperature superconducting materials, metal alloys, ceramic materials, etc. at different temperatures, providing a basis for material design and preparation. Monitoring the changes in substances during chemical reactions, such as studying the structural changes of catalysts and the evolution of active centers in high-temperature catalytic reactions, can help develop efficient catalysts. Study the physical properties of substances at high temperatures, such as magnetism, electronic structure, and their relationship with temperature, and explore new physical phenomena and laws.
Technical parameter of high temperature accessory:
Temperature setting: Inert gas environment from room temperature to 1200 ℃
Vacuum environment: high temperature of 1600 ℃
Temperature control accuracy: ± 0.5 ℃
Window material: Polyester film
Cooling method: deionized water circulation cooling
In summary, the high temperature accessory in the diffractometer is an important testing tool that can perform X-ray diffraction analysis on samples under high temperature conditions, providing strong support for research in fields such as materials science, chemical engineering, and physics.